大數據時代的四大處理
大數據時代處理數據的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。
大數據時代處理流程
具體的大數據處理方法確實有很多,但是根據筆者長時間的實踐,總結了一個普遍適用的大數據處理流程,并且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是采集、導入和預處理、統計和分析,最后是數據挖掘。
大數據時代處理之一:采集
大數據的采集是指利用多個數據庫來接收發自客戶端(Web、App或者傳感器形式等)的數據,并且用戶可以通過這些數據庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型數據庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL數據庫也常用于數據的采集。
在大數據的采集過程中,其主要特點和挑戰是并發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們并發的訪問量在峰值時達到上百萬,所以需要在采集端部署大量數據庫才能支撐。并且如何在這些數據庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據時代處理之二:導入/預處理
雖然采集端本身會有很多數據庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式數據庫,或者分布式存儲集群,并且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鐘的導入量經常會達到百兆,甚至千兆級別。
大數據時代處理之三:統計/分析
統計與分析主要利用分布式數據庫,或者分布式計算集群來對存儲于其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲Infobright等,而一些批處理,或者基于半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的占用。
大數據時代處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什么預先設定好的主題,主要是在現有數據上面進行基于各種算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型算法有用于聚類的Kmeans、用于統計學習的SVM和用于分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用于挖掘的算法很復雜,并且計算涉及的數據量和計算量都很大,常用數據挖掘算法都以單線程為主。
整個大數據大數據時代處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
相關文章
大數據等構成的人體信息物聯網將改變未來醫療模式
一條項鏈可以實時監測人體心肺功能、一個戒指可以監測呼吸脈搏等指標、一副眼鏡可以監測精神疾病患者狀況……記者20日從成都舉行的2021第二屆四川康復治療及產業論壇上獲悉,由大數據、云計算、有限傳輸與無線傳輸相結合構成的人體信息物...
依托大數據物聯網 開展防汛工作
記者從白云區綜合行政執法局獲悉,為確保轄區安全度汛,該局充分利用大數據、物聯網技術,開展職責范圍內防汛搶險的應急綜合調度、指揮、協調工作,以有效應對汛期突發事件、緊急或特殊情況。該局以白云區“數字城管”系統平臺為基礎,依托...
治理PM2.5推行智能型環保 云計算大數據首當其沖
兩會期間,全國人大代表、廣東省家電商會會長、TCL集團董事長李東生接受采訪時一句:“北京昨天的霧霾還很重,今天天氣很好,北京的天氣比較講政治。”的玩笑逗樂了在場所有記者。
大數據和分析解決方案如何在數字時代徹底改變業務?
如今的技術在不斷地發展。無論是自動駕駛汽車、機器人還是重型自動機械,技術只會隨著時間的推移而變得更好。然而,很多技術在很大程度上依賴于數據、各種規模和類型企業的信息,以及解釋這些數據和信息的高級分析技術。由于大數據在推動組織數...
互聯網趨勢下,物流倉儲如何“玩”好大數據
前段時間電商物流界兩位大佬的“數據之爭”在網上鬧得沸沸揚揚,其他因素先不說,單說引起此次紛爭的“大數據”,已經是互聯網時代一個不得不思考的問題。早已有人斷言:得數據者得天下。巨沃成立至今一直專注于倉儲物流供應鏈的管理與訴求...