基于射頻技術的無線識別系統設計
O 引言
射頻識別是一種非接觸式的自動識別技術,它通過射頻信號自動識別目標對象并獲取相關數據。射頻識別工作無須人工干預、非接觸、閱讀速度快、無磨損、不受環境影響、壽命長、便于使用。目前,射頻識別技術在國外發展非常迅速,產品種類繁多,已廣泛用于工業自動化、商業自動化、交通運輸控制管理等眾多領域,如汽車、火車等交通監控;高速公路自動收費系統;停車場管理系統;物品管理;倉儲管理:車輛防盜等。由于我國射頻識別技術起步較晚,除用于中國鐵路的車號自動識別系統外,僅限于射頻公交卡的應用。本文給出一種實現簡單射頻識別系統的方式。閱讀器和應答器均包含在單片機控制系統中,利用ASK調制與解調電路以及匹配網絡電路,使整個系統的可識別有效距離約為8.3cm,有一定的使用價值。
1 總體方案設計
無線射頻識別(RFID)系統是由應答器、閱讀器及應用支撐軟件等幾部分組成。應答器采用直流電源供電,它主要由編碼電路、載波振蕩電路、調制電路和發射電路構成。其原理如圖1所示。該方案簡單易行,電路簡單。但這種應答器必須采用電源供電,否則電路無法工作。

將應答器看作有源應答器,在閱讀器設計部分,將接收到的微弱電壓信號進行放大,在利用解調電路取出有用信號,經過判別電路后再利用解碼芯片,最后利用顯示控制電路顯示閱讀器接收到的數據,其原理如圖2。所示該方案電路設計簡單,容易硬件實施,可行性好。

2 電路的理論分析與計算
2.1 耦合線圈的匹配理論
作為電磁能量的發射裝置一耦合線圈,必須考慮其匹配問題。耦合線圈在無線識別系統的工作頻率范圍內表現為阻抗ZL,為了實現與系統的功率匹配,必須通過無源的匹配電路實現阻抗轉換,使功率無反射地傳輸到耦合線圈。可以利用少量組件來實現相配的匹配電路。在現實應用中有多種不同的13.56MHz的無線識別系統采用了如圖3的匹配電路。

本設計使用了該匹配電路,實現了阻抗匹配。要確定匹配電路的參數,需要測量出線圈的電感LS和導線的歐姆電阻RLS。
2.2 應答器的發射電路分析
在應答器的發送器部分,首先由頻率穩定的石英晶體振蕩器產生所需的工作頻率的信號。振蕩器信號被饋送到由信號編碼的基帶信號控制的調制級。此基帶信號就是鍵控的恒壓信號,在此將二進制數據以串行碼的形式表示出來。根據調制器的類型,執行對振蕩器信號的ASK或FSK調制。此時基帶信號會被直接饋送到頻率合成器,再通過功率放大使調制后的信號達到所需電平,然后將調制后的放大信號輸[FS:PAGE]出耦合到初級線圈。
2.3 閱讀器接收電路分析
閱讀器接收電路由耦合線圈、放大器、解調器、解碼器和顯示部分組成。通過耦合線圈所得的電壓信號經過放大器放大后,再經解調器解調得到載波信號,再經解碼器解碼和顯示電路得到應答器所發送的數據。
3 程序及電路的設計與計算
3.1 閱讀器電路的設計計算
本次所設計的閱讀器電路由耦合線圈、放大電路、解調電路、解碼電路和單片機顯示電路組成。耦合線圈及放大器電路設計如圖4所示。為了使閱讀器線圈的耦合效率高,可將通過該線圈并聯可調電容,使其諧振頻率和應答器的工作頻率一致,使閱讀器線圈工作在諧振狀態,并聯諧振回路的諧振頻率可由式(1)計算:

相關文章
醫療應用中的微波與射頻技術
多年來,微波器件公司一直為諸如核磁共振成像(MRI)系統等醫療成像應用提供器件。雖然成像應用繼續提供了堅實的機會,但許多其它醫療應用領域也開始為無線微波和射頻技術敞開了大門。
大港供銷公司倉儲管理應用RFID射頻技術
6月20日庫房盤點,大港供銷公司鋼材庫保管員姜秀華沒有像往常那樣,拿著賬本、走進庫區、對著標簽清點物資數量,而是坐在電腦桌前,打開RFID倉儲系統。物資的所有信息,包括大類、名稱、數量和存放地點,在系統中一目了然。